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Abstract-This paper summarizes an analytical and numerical study of natural convection in a rectangular 
porous layer subjected to uniform heat fluxes along its vertical boundaries. In the formulation of the 
problem, use is made of the Brinkman-extended Darcy model which allows the no-slip boundary condition 
to be satisfied. The boundary layer equations are solved using a modified Oseen linearization method. It 
is found that the boundary effects have a non-negligible influence on the flow field and heat transfer. 
These effects are more pronounced in high porosity media where the flow rate and heat transfer are 
significantly reduced. For low porosity media the results obtained on the basis of a pure Darcy’s law 
model are recovered as a limiting case of the present theory. Numerical results are reported in the range 
20 I R I 1000, lo-’ 2 Da I 10 and 2 I A I 4. The boundary layer analytical solution is shown to agree 

well with the numerical results. 

INTRODUCTION 

NATURAL convection in saturated porous media has 
recently received considerable attention because of 
numerous applications in geophysics and energy 
related engineering problems. Such applications 
include geothermal reservoirs, porous insulations, 
packed-bed catalytic reactors, heat storage beds, 
nuclear waste disposal systems, sensible heat storage 
beds, and enhanced recovery of petroleum resources. 
Most analytical studies for natural convection in 
porous media are based on the Darcy flow model. 
One of the main advantages of Darcy’s law is that it 
linearizes the momentum equation, thus removing 
a considerable amount of difficulty in solving the 
governing equations. On the other hand, since Darcy’s 
law is of order one less than the Navier-Stokes it 
cannot account for the no-slip boundary condition 
on rigid boundaries. In order to take into consider- 
ation the boundary effect, which may become import- 
ant in porous media with high porosities such as foam 
metals and fibrous media, Brinkman’s extension of 
Darcy’s law should be used. 

By using Brinkman’s equation Chan et al. [l] 
have considered numerically the problem of natural 
convection in an enclosed porous medium bounded by 
plane rectangular surfaces at different temperatures. It 
was found that when the Darcy number Da, based 
on the width of the enclosure, was less than 10m3 the 
results were in agreement with Darcy’s law. A similar 
criterion has been reported by Cheng [2] while 
discussing the motion of a fluid in a horizontal layer 
of saturated porous medium uniformly heated from 
below. The Brinkman model was also used by Katto 
and Masuaka [3] as well as by Walker and Homsy 

[4] for the studies of onset of free convection of 
liquids in a porous medium bounded between parallel 
plates and heated from below. More recently, a 
boundary layer analysis for natural convection in a 
vertical porous enclosure has been performed by Tong 
and Subramanian [S]. The boundary layer equations, 
derived from the Brinkman model, were solved using 
the modified Oseen method. The flow field was found 
to be characterized by a parameter E defined as 
R DaJA where both the Rayleigh number R and 
Darcy number Da are based on the width of the cavity 
and A is the cavity aspect ratio. It was observed that 
the Darcy results agreed with their solution to within 
1% when E < order 10m4. However, for higher values 
of E the heat transfer was found to be significantly 
below the value predicted by Darcy’s law. Further- 
more, by comparing the experimental data reported 
by Klarsfeld [6] with the theoretical results predicted 
both by Darcy’s and Brinkman’s equations it was 
concluded by Tong and Subramanian that the Brink- 
man model offered the best agreement with the 
experimental results. The fact that, for high porosity 
media, Darcy’s model may incorrectly overpredict the 
heat transfer has also been observed for the case of 
natural convection from a vertical plate embedded in 
a porous medium. From Brinkman’s equation and 
the boundary layer approximation Evans and Plumb 
[7] have demonstrated that the boundary effect can 
be neglected only when the Darcy number, based on 
the length of the plate, was less than 10M7. Other 
studies [8-lo], using both numerical and perturbation 
methods, have shown that in fact the boundary effect 
depended on the ratio of the momentum and thermal 
boundary layer thicknesses. For low porosity media 
the thickness of the viscous layer, which is caused by 
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NOMENCLATURE 

A aspect ratio, X/L U dimensionless horizontal velocity com- 

C, specific heat at constant pressure ponent, u’L’/a 

Da Darcy number, K/L’* u, dimensionless horizontal velocity in the 

g gravitational acceleration core region, &L’/a 

H’ vertical dimension V dimensionless vertical velocity compon- 
k thermal conductivity of fluid-saturated ent, v’L’Ja 

porous medium X dimensionless horizontal position, x’/L 

K permeability Y dimensionless position, y’/L’. 

L horizontal dimension 
Nu Nusselt number, equation (26) Greek symbols 

P’ pressure 
z 

effective thermal diffusivity 

P(Y) even function, equation (17) thermal expansion coefficient 

Q vertical flow rate, equation (41) p viscosity of the fluid 

4’ constant heat flux V kinematic viscosity of the fluid, p/p 

q(y) odd function, equation (17) 
R Darcy-Rayleigh number, g/lKL”q’/kav z 

density 
stream function, t///a 

Ra Rayleigh number, R/Da IL, core stream function, $;/a 

t dimensionless time, t’a/L’* Co vorticity, w’L’2/a. 

T temperature 

Tb reference temperature at the geometric Superscript 
center of the cavity dimensional quantities. 

7% core temperature 
AT wall-to-wall temperature difference at Subscript 

y = const. cc solution in the core region. 

the no-slip boundary condition, becomes in general 
much smaller than the thermal boundary layer. As a 
result the no-slip condition can be neglected and 
Darcy’s model is satisfactory. However, for high 
porosity media, the boundary effect can be quite 
important when the thickness of the viscous layer is 
more than or of the same order as that of the thermal 
boundary layer. For this situation Darcy’s model will 
incorrectly overpredict the heat transfer [9] and flow 
rate [ll]. 

The object of the present work is to study the 
boundary effect on the natural convection heat trans- 
fer in a rectangular medium heated and cooled with 
uniform heat flux along the vertical side walls. This 
problem has been considered in the past by Bejan 
[12] on the basis of the boundary layer and Darcy’s 
approximations. The inertia effect on the heat transfer, 
which may become important when the Reynolds 
number based on the mean pore diameter is of 
order one or greater, has been discussed recently by 
Poulikakos [13]. In this study the boundary effect, 
though not important in low porosity media, is shown 
to be significant in high porosity media. 

PROBLEM STATEMENT AND BOUNDARY 
LAYER ANALYSIS 

Consider natural convection in an enclosed porous 
medium with rectangular, impermeable boundaries. 
The width and height of the model are L’ and H’, 

respectively (Fig. 1). The horizontal-end walls are 
insulated while the system is heated along the right- 
hand side and cooled along the left-hand side uni- 
formly, i.e. 

(1) 

Making the Boussinesq approximation and assuming 
constant properties, the governing equations with 
inertial and thermal dispersion effects neglected are 

1 (3) 

uI =d9’ a*’ 
ay’ ’ 

li= -a (4) 

where Ijl’ is the usual stream function and u’, v’, T’, 
K, g, fl, p, and C, represents the volume-averaged 
fluid velocity components, the local equilibrium tem- 
perature between the fluid and the porous solid, the 
permeability of the porous matrix, the gravitational 
acceleration, the coefficient of thermal expansion of 
the fluid, the effective thermal conductivity, the fluid 
density and the specific heat at constant pressure, 
respectively. 
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The above system is reduced to dimensionless 
form by introducing the following scales relating 
dimensional and non-dimensional quantities 

x, Y = (x’, Y’)lL’, 

T= (T’ - T;)/AT’, 

11, v = (u’, v’)/(a/L’) 

AT’ = (q’L’)/k (5) 

* = V/a 

where Th is the temperature at the geometric center 
of the cavity; AT’ a characteristic temperature differ- 
ence and R is a Rayleigh number based on the 
constant heat flux q’ and the permeability K of the 
medium. 

The resulting non-dimensional system correspond- 
ing to equations (2)-(4) becomes 

V2+ = DaV4$ - Rg (6) 

VZTJ.!@C!.@T 
ay ax ax ay 

where Da = K/L.” is the Darcy number. 
The boundary conditions for equations (6) and (7) 

are given by 

atx = 0,l: $=O, $0, $ 

A (8) 
aty= f-: 

2 

where A = H’/U is the cavity aspect ratio. 
Of particular interest is the case of convection at 

large Rayleigh numbers, driven by boundary layer 
flows, where most of the fluid motion is confined to 
a thin layer along each vertical wall. Making the 
usual boundary layer simplifications, the approximate 
forms of equations (6) and (7) valid in the boundary 
layer regime can be obtained as 

d”+au,O 
ax ay 

i?!=~~a”v+~!T 
ax ax3 ax 

a2T aT aT 
dX2=Uax+vay. (11) 

The corresponding dimensionless boundary con- 
ditions for the left boundary layer are 

x=0 u=v=O, L, 
ax 

where 

p(y) = even function 
q(y) = odd function (17) 

X--*cO 

1 

u+%(Y) 
T+ T,(Y) (12) 

v-r0 

W + 4) 
Dap’(1 - q)2 

-(1+2q) . >I 
(18) 

where II, and T, are the flow and temperature in the Substituting equation (18) into equations (15) and (16) 
core of the cavity, outside the boundary layer. and observing that IJ?,, TL and p are even functions, 

The above system of equations is similar to that it is deduced that the odd function q must be zero 
solved by Tong and Subramanian [S] in their study and p and T& must be constants. It follows from this 

of the boundary layer regime in a rectangular porous 
cavity with isothermal vertical walls. The procedure 
followed in ref. [S] is based on the technique laid out 
by Gill [ 141 who used the modified Oseen method to 
solve the boundary layer equations for Newtonian 
fluid convection in an enclosure. Omitting the algebra 
already discussed in refs. [S, 12, 14, 151 the solution 
for the velocity and temperature field, subjected to 
the present set of boundary conditions given by 
equations (9)-( 12) is 

R(e-AIX _ emAzx) 

’ = Da@: - Ai) - (I, - A,) 
(13) 

T = _ Da(lfe-“1” - 1: e-‘zx) 

Da@: - 2:) - (A, - &) 
+ v + T,. (14) 

R 

The temperature profile (14) satisfies the uniform heat 
flux condition at x = 0. The unknown functions 1, 
and 1, are complex numbers with positive real parts 
and are in general a function of y. The temperature 
distribution outside the boundary layer region T, is 
also a function of y. Once T,, A1 and A2 are deter- 
mined, v and T are completely specified by equations 
(13) and (14), respectively. 

The unknown functions Al(y), I,(y) and T,(y) are 
determined, by integrating the conservation of mass 
with respect to x, leading to 

Jim=- mvdx= 
I 

WI - A21 

0 CD4: - %I - (4 - &)PI~2 
(15) 

where r++,(y) is the dimensionless core stream function. 
Similarly integration of the energy conservation 

equation and combination with equations (13) and 
(14) yields 

i $$$-(Dal.,i2 + 1) - Ij/,Tk = -1 
1 2 1 

(16) 

Making use of the fact that the core flow must 
be centrosymmetric about x = l/2 and y = 0 it is 
advantageous to express equations (15) and (16) in 
terms of Gill’s functions [14] 
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FIG. 1. Definition sketch. 

result that the solution, for the present problem, is 
given by 

(19) 

64DaR 
1(1m = (Dap2 _ 4)2’ 

-4Dap 

T=(Dap2 -4) 
cash e-px14 

+&+Tm (22) 

where J = J(8/Dap2 - 1). 
The value of the constant p is determined by 

considering the arbitrary control volume of Fig. 1. 
Integrating the equation of energy, equation (1 l), and 
making use of the thermal boundary conditions 
applied on the solid boundaries, namely constant heat 
flux on the vertical walls and zero heat flux through the 
horizontal wall, one obtains the following equation 

L’ s pC,v’T’dx’ = s L’kEdx’ 
ayl 

(23) 
0 0 

at any position y’. 
Writing expressions similar to equations (21) and (2) Da >> 1: the viscous j7uid situation 

(22) for the boundary layer flowing up along the Taking the limit of equation (24) for Da + co the 
right vertical wall and substituting these along with value of p is obtained as p z (8192Ra2)‘19, where 

equations (21) and (22) into equation (23) yields upon 
integration and routine algebra 

p(Dap’ - 4)5 = 8192R2, 
Da2(Dap2 + 4) 

(24) 

The Nusselt number predicted by the present analy- 
sis is derived by first evaluating the wall-to-wall 
dimensionless temperature difference 

AT= T,=, - TX=, = 
8Da p 

(Dap2 - 4)’ 
(25) 

It is noted that the temperature difference between 
the two vertical walls is independent of altitude y. 
The Nusselt number is thus given by 

(Dap2 - 4) 

8Da p 
(26) 

where AT’ is the actual wall-to-wall temperature 
difference. 

It is well known that the Brinkman equation 
reduces to the Darcy equation as the permeability 
K + 0 and to the Navier-Stokes equation as K + co. 
Hence we can check the previous results for two 
special cases. 

(1) Da CC 1: the Darcy medium situation 
Taking the limit of equation (24) for Da + 0, it is 

found that p z 2(Da- 1/2 + R215). Substituting this 
result in equations (19)-(22) and (26) it may be shown 
that the flow field and temperature field reduce to 

a = _R3/5 e-R2’sx forx # 0 

T= _R-Zise-RZ”~ + T m 

(27) 

(28) 

$m = R’15, T, = y 
II/, 

(29) 

Nu = ;R2”. (30) 

The boundary layer regime in a Darcy porous 
layer with uniform heat flux from the side has been 
considered in the past by Bejan [12] for the case of 
a vertical layer and by Vasseur et al. [16] for the case 
of an inclined layer. The above equations, when 
translated into corresponding notations, are the same 
as those obtained in refs. [12,16]. 
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Ra = R Da- ‘. Substituting this result into equations points are determined with equation (38) using 
(19)-(22) and (26) one obtains updated values of the stream function. 

32 r = -,Rae-px14sin 11, 
( > 4 

forVx (31) 
P 

T= -ie-Pri4cos $x + T, 
0 

(32) 

I++, = p,a, T, = Y 
I(/m 

(33) 

Nu = 5 (34) 

which are similar to the results obtained in ref. [lS] 
for the case of a rectangular cavity filled with a viscous 
fluid. 

In the present study, several different mesh sizes 
were used, the choice depending on the aspect ratio 
A of the cavity. The mesh size in the x-direction 
ranged from 30 to 50. In the x-direction a mesh size 
of A/15 to A/25 was chosen. A typical value of the 
time step was 0.005. The total time steps ranged from 
about 100 to 1000 and the corresponding computing 
time ranged from 60 to 300s on the IBM 4381 
computer. 

To have an additional check on the accuracy of the 
results, an energy balance was used for the system. 
For this the heat transfer through each plane 
x = const. was evaluated at each grid location 
0 I x I 1 and compared with the input at x = 0. For 
most of the results reported here the energy balance 
was satisfied to within 2% and never exceeded 5%. 

NUMERICAL SIMULATIONS 

The vorticity-stream function formulation of the 
complete governing equations (6)-(8) is 

RESULTS AND DISCUSSION 

aw 
X+o=DoV2~+R~ (35) 

aT duT avT 
dt+x+-=v2T 

ay 
(36) 

vz* = --0 (37) 

a+ 
u=ay’ 

a+ 
v= -ax. (38) 

The initial and boundary conditions are given by 

U=V=*=W=o; T=O att=O 

Based on the governing equations of motion and 
energy it is seen that the parameters affecting the 
convective heat transfer in the present problem are 
the Rayleigh number R, Darcy number Da and aspect 
ratio A. However, the theoretical results obtained 
both for a Darcian medium (equations (27)-(30)) and 
pure viscous fluid (equations (31)-(34)) show that the 
solution is independent of A. It has been demonstrated 
numerically in ref. [16] that this was indeed the case 
when A was approximately equal or greater than 2. 
The range of parameters considered in the present 
study are 201R I 1000, lo-’ I Da< 10 and 
2 I A I 4. In the following section the effects of 
different parameters are discussed. 

u=u=$#=O; g = 1 
ax 

at x = 0,l 

u=u=l(l=@, 
aT 
-=0 aty= &G. 
ay 

(39) 

The governing equations (35)-(38) under boundary 
conditions (39) can be numerically solved by the finite 
difference method. The alternate direction implicit 
procedure (ADI) is adopted to obtain from equation 
(36) the temperature profiles by using a uniform grid. 
The computational method involved differs slightly 
from that described by Mallison and de Vahl Davis 
[17]. The first and second derivatives are approxi- 
mated by central differences and the time derivatives 
by a first-order forward difference. The finite differ- 
ence form of the energy equation is written in con- 
servative form for the advective term in order to 
preserve the conservative property [18]. The values 
of the stream function at all grid points are obtained 
with equation (37) via a successive overrelaxation 
method (SOR). The stream function varying by less 
than 0.5 x 10m3 over all grid points was adopted as 
the convergence criterion. The velocities at all grid 

Figure 2 illustrates typical streamlines and iso- 
therm patterns for R = 100, A = 2 and Da = 0, 

10e4, lo-’ and lo-‘, respectively. For each map 
of Fig. 2 the increments between adjacent stream- 
lines and isotherms are A$ = $,,,/8 and 
AT= (T,,,- Tmi,,)/lO, respectively, where $,,,., is the 
maximum value of the stream function and Tmaxand 
Tmi, the maximum and minimum values of the 
dimensionless temperature field located at the upper 
right-hand corner and lower left-hand corner of the 
cavity, respectively. Figure 2(a) illustrates the results 
obtained with Darcy’s law, i.e. for Da = 0 and the 
fluid allowed to slip on the solid boundaries. This 
situation has been discussed in the past in refs. 
[12,16]. The pattern of streamlines of Fig. 2(a) shows 
that a boundary layer of constant thickness develops 
near the vertical boundaries while the core fluid is 
stagnant. From the equal spacing of the isotherms a 
linear thermal vertical stratification both in the core 
and in the vertical boundary layers is deduced. In fact 
the temperature difference between vertical walls is 
independent of altitude since the wall temperatures 
increase linearly at the same rate as the vertical 
temperature gradient in the core region [12]. Finally 
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(a) 

(c) (d 1 

FIG. 2. Numerical solutions for the flow and temperature field R = 100, A = 2: (a)Dn = 0, IL,,,,. = 2.367, 
T,,, = 0.644, Tmin = -0.644; (b)Da = 10-4, (I,., = 2.352, T,,, = 0.643, Tmin = -0.633; (c)Da = lo-‘, 

I/I,, = 2.155, T,,, = 6.703, Tmi, = -0.703; (d)Da = lo-‘, IL,,,,. = 1.291, T,,, = 0.754, Tmi, = -0.754. 

the streamlines of Fig. 2(a) are observed to be closely 
spaced near the solid boundaries. This configuration 
indicates that the fluid velocity is a maximum on the 
boundaries as expected since Darcy’s law allows the 
fluid to slip on them. Figures 2(b)-(d) illustrate typical 
results obtained on the basis of Brinkman’s model for 
various values of Da. The results obtained with 
Da = 10w4, Fig. 2(b), are seen to be qualitatively 
similar to those obtained by Darcy’s law (Fig.Z(a)). 
This is expected since when Da is small enough, i.e. 
for low porosity media, the viscous term which is 
responsible for the boundary effects becomes negli- 
gible and Darcy’s law correctly describes the flow 
behavior. However, as the porosity of the solid matrix 
(i.e. Da) is increased the influence of the boundary 
effects on the flow and temperature fields becomes 
significant. This is illustrated in Figs. 2(c) and (d) where 
the streamlines are observed to become relatively 
more and more sparsely spaced near the solid bound- 
aries as the value of Da increases. This is due to 
the fact that the viscous term (Brinkman) becomes 

gradually more important and slows down the fluid 
in the neighborhood of the walls. It is also observed 
that the region where the flow has a maximum 
velocity, as indicated by closely spaced streamlines, 
moves away from the walls towards the core region 
as Da is increased. The sequence of Fig. 2 illustrates 
also the effects of Da on the isotherm field. When Da 
is small the convective motion inside the cavity is 
strong and the isotherms are considerably distorted. 
The flat isotherms in the core indicate a negligible 
lateral conduction. As Da is increased the viscous 
effects become more important and slow down the 
buoyancy-induced flow inside the cavity. The iso- 
therm profiles become more linear and heat transfer 
across the cavity results from the combined action of 
conduction and convection. 

Figure 3 shows the vertical velocity profiles at mid- 
height of the enclosure for R = 300 and various values 
of Da. Since the viscous forces are accounted for in 
Brinkman’s model the no-slip boundary condition is 
satisfied and the velocity at the wall is zero. The 
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FIG. 3. The vertical velocity profile at mid-height of the enclosure as a function of Darcy number Da for 
R=300. 

velocity increases to a maximum and then drops back 
to zero in the core region of the enclosure. The region 
adjacent to the wall, where the vertical velocity 
increases from the zero value at the wall to the peak 
value, is called viscous sublayer [9]. With Darcy’s 
model, shown as a dotted line in Fig. 3, the peak 
velocity is located on the wall, due to the fact that 
the no-slip boundary condition is not satisfied, and 
the thickness of the viscous sublayer is nil. As the 
value of Da increases the thickness of the viscous 
sublayer occupies gradually a larger portion of the 
momentum boundary layer. The position of the peak 
velocity xP, i.e. the thickness of the viscous sublayer, 
can be obtained by solving for x in equation (21) 
when the velocity gradient is zero. The result is 

4 
xp = 

P,&~/~~P~ - 1) 
tanh-’ J(8/DapZ - 1) (40) 

and as Da -+ 0, xp + 0 asymptotically and, except in 
a thin region next to the wall, the velocity profile is 
the same as that predicted by a pure Darcy analysis. 
This is illustrated for the case with Da = low6 in Fig. 
3. As the permeability of the porous medium is 
increased not only does the position of the maximum 
velocity shift away from the wall but also its magnitude 
is considerably reduced. The flow is then dominated 
by the boundary effects and the velocity profiles 
approach those for a pure viscous fluid. Figure 3 
shows good agreement between the numerically and 
theoretically predicted values of velocity profiles. 

The numerical results presented in Figs. 3-7, were 
obtained for the case of a cavity with an aspect ratio 
A = 4. As mentioned earlier, the numerical results are 
independent of the aspect ratio provided that A is 
approximately equal to or greater than 2 [16]. The 
effect of Da on temperature profiles at y = 0 is 
illustrated in Fig. 4 for the case R = 300. All the 
curves have a constant slope at x = 0 since a constant 
heat flux is prescribed on the vertical walls. When Da 
is small enough (Da = 10e6) the effect of the no- 
slip condition on temperature profiles is seen to be 
negligible and Darcy’s mode1 can be employed. For 
this situation the convective motion within the cavity 
is maximum since the only resistance to the flow 
within the porous media is due to the presence of the 
solid matrix. A maximum quantity of heat is extracted 
from the wall and its temperature drops to a minimum 
value. However, as the permeability of the porous 
media is increased, the boundary frictional resistance 
becomes gradually more important and adds to the 
bulk frictional drag induced by the solid matrix to 
slow down the convective motion. As a result relatively 
less heat is removed from the wall and its temperature 
increases significantly. A good agreement between 
the analytical solution and the numerical results is 
observed in Fig. 4. In fact, at the mid-height of the 
enclosure, the analytical and the numerical solutions 
were found to be in good agreement with each other 
provided that R is greater than approximately 20 (see 
Fig. 6). For lower values of R, the analytical solution, 
developed for the boundary layer becomes inad- 
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FIG. 4. The temperature profile at mid-height of the enclosure as a function of Darcy number Da for 
R = 300. 
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FIG. 5. Effect of Darcy number Da on the flow rate in the boundary layer at mid-height of the enclosure 
for R = 300. 

equate. Also, as expected, the present solution breaks illustrated in Fig. 5 where the flow rate Q within the 
down in the vicinity of the top and bottom adiabatic left boundary layer at y = 0 is plotted as a function 
walls where the fluid must flow horizontally, and the of Da for the case R = 300. Integrating the velocity 
vertical temperature gradient must vanish. A similar profile given by equation (21) over the thickness of 
behavior has already been reported and discussed the momentum boundary layer it is found that 
thoroughly in the past by Bejan [12] and Kimura 
and Bejan [15]. 

The fact that the convective circulation inside the 
cavity is reduced as the value of Da increases is 

Q= 
64R Da 

(Dap’ - 4)” 
(41) 
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BRINKMAN 

DARCY ( Eq 30) 
----- -- 

VISCOUS FLUID 

, I I I I I I I 

10.’ lO‘6 10-5 IO‘4 IO‘3 lO-2 10-l IO0 IO’ 
Da 

FIG. 6. Effect of Rayleigh number R and Darcy number Da on the Nusselt number Nu. 

FIG. 7. Effect of Darcy number Da on Nusselt number Nu for R = 100 and 1000. 

Similarly, integration of equations (27) and (31) yields 
Qn = R1’5 for a Darcy medium and Q, = 1.167R~“~ 
for a pure viscous fluid. It is seen from Fig. 5 that the 
flow rate predicted by Brinkman’s model starts to 
deviate from Darcy’s model when Da 2 10m4. As 
mentioned before the decreases of the flow rate result 
from the boundary effect, this effect increasing with 
the permeability of the porous medium. When 
Da 2 10 the resistance to the flow is dominated by 
the boundary effect, the frictional drag induced by 
the solid matrix becomes relatively negligible, and the 
flow rate approaches that for a pure viscous fluid. 

In Fig. 6 the Nusselt number given by equation 
(26) is plotted against the Rayleigh number for various 
Darcy numbers. It is seen that Bejan’s solution, 
equation (30), based on Darcy’s model is valid only 
for small values of Da. When Da > 10m6 the solution 
of Bejan overpredicts the heat transfer across the 
enclosure due to the neglect of the boundary effects. 
This is expected since Brinkman’s model provides a 
lower velocity, which causes less energy to be carried 
away from the boundary, thus causing a lower Nusselt 
number. For a given value of Da the deviation from 
Darcy’s model increases as R becomes larger. Thus 



726 P. VASSEUR and L. ROBILLARD 

for Da = 1O-3 Bejan’s solution overpredicts the heat 
transfer by approximately 10% when R = 20 and 25% 
when R = 1000. Numerical solutions are presented in 
Fig. 6 along with the analytical solutions. It can be 
seen that there is an excellent agreement between the 
analytical solution and numerical results. 

Another view of the effect of Da on the heat transfer 
is found in Fig. 7 where a correlation of Nu as a 
function of Da is presented for R = 10’ and 103, 
respectively. The Nusselt number has been normalized 
with respect to R2/5, i.e. half the value predicted by 
Darcy’s law. Consequently all the curves in Fig. 7 
tend towards NujRzi5 = 0.5 when Da + 0. Results 
obtained from Darcy’s law are valid when Da is 
approximately smaller than 10m6. As the Darcy num- 
ber is increased the value of the heat transfer within 
the cavity drops significantly due to the boundary 
effects. When Da is high enough, i.e. when the Darcy 
resistance due to the solid matrix becomes negligible 
with respect to that resulting from the boundary 
effects, the present solution approaches that of 
Kimura and Bejan [ 151 for a pure viscous fluid. This 
situation is reached when Da z 1 for R = 10’ and 
Da z 0.1 for R = 103. 

CONCLUSIONS 

The effect of the no-slip boundary condition on the 
natural convection heat transfer in a two-dimensional 
porous layer with uniform heat flux from the side has 
been studied both theoretically and numerically. In 
the formulation of the problem use has been made of 
the viscous shear stress term due to Brinkman in 
order to satisfy both the no-slip and impermeable 
conditions on the bounding rigid surfaces. The ana- 
lytical solution focuses on the boundary layer regime 
for which the governing equations are solved using 
the modified Oseen method. The boundary effects are 
found to slow down the buoyancy-induced Row with 
a resulting decrease in heat transfer. This trend is 
enhanced as the permeability of the porous medium 
increases. The present analytical solution reduces to 
the regular Darcy’s law and viscous flow solution in 
the limits of low and high porosities, respectively. A 
good agreement is found between the analytical 
predictions and a numerical simulation of the same 
phenomenon. An improved model would also include 
the convective and inertial effects. 
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LE MODELE DE BRINKMAN POUR LE REGIME DE COUCHE LIMITE DANS UNE 
CAVITE RECTANGULAIRE AVEC UN FLUX DE CHALEUR UNIFORME SUR 

LES COTES 

Rbrnn&-On resume une etude analytique et numerique de la convection naturelle dans une couche poreuse 

rectangulaire soumise a des flux de chaleur uniformes le long des frontieres verticales. Dans la formulation 
du problime, on utilise le modele Darcy-Brinkman qui permet de satisfaire la condition aux limites de 
non-glissement. Les equations de couche limite sont resolues par une methode modifite de linearisation 

d’oseen. On trouve que les effets de frontiere ont une influence non negligeable sur le champ d’koulement 
et le transfert thermique. Ces effets sont plus prononcis dans les milieux a forte porosite pour lesquels le 
debit et le transfert de chaleur sont significativement rtduits. Pour les faibles porositts, les rtsultats obtenus 
a partir d’un modele avec loi pure de Darcy sont retrouves comme un cas limite de la presente thtorie. Des 
rtsultats numeriques sont presentis dans le domaine 20 < R < 1000, IO-’ < Da < IO et 2 < A < 4. La 

solution analytique de couche limite s’accorde bien avec les resultats numeriques. 

DAS BRINKMANN-MODELL FUR GRENZSCHICHTBEREICHE IN 
RECHTECKIGEN HOHLRAUMEN BE1 GLEICHFGRMIGER, 

SEITLICH AUFGEBRACHTER WARMESTROMDICHTE 

Zusammenfassung-Es werden analytische und numerische Untersuchungen der freien Konvektion in 
rechteckfiirmigen poriisen Schichten, die mit einer gleichfiirmigen Warmestromdichte entlang den hori- 
zontalen Begrenzungsflachen beaufschlagt werden, zusammenfassend vorgestellt. Bei der Formulierung 
des Problems wurde vom erweiterten Brinkmann-Modell, dem Darcy-Modell, Gebrauch gemacht, das die 
Haftbedingungen der Grenzschicht erfiillt. Die Grenzschichtgleichungen werden mit Hilfe einer modi- 
fizierten Oseen-Linearisierungs-Methode gel&t. Es zeigt sich, daD der EinfluB der Grenzschichteffekte auf 
das Stromungsfeld und den Warmelbergang nicht zu vernachlassigen ist. Diese Effekte verstlrken sich bei 
stark poriisen Stoffen, bei denen Durchsatzrate und Warmeiibergang wesentlich kleiner sind. Bei weniger 
poriisen Stoffen stellen die auf der Basis des Darcy-Modells gewonnenen Ergebnisse einen Grenzfall der 
vorgestellten Theorie dar. Numerische Ergebnisse liegen fur die Bereiche 20 < R < 1000, IO-’ 6 Da < IO 
und 2 4 A < 4 var. Es zeigt sich, da13 die analytische Grenzschichtliisung gut mit den numerischen 

Ergebnissen iibereinstimmt. 

MOAEJIb EPMHKMAHA AJDI HOI-PAHM9HOFO CJlO5I B I-IP~MOYFOJIbHOR 
IIOJIOCTM C EOKOBbIM OAHOPOflHbIM I-IOABOflOM TEIIJIA 

.kIHOTaUHS+~pkiBeLIeHbI pe3ynbTaTbt aHanmwecxor0 A sicnemoro riccnenoBaHIi~ ecTecTBeuHoB KOH- 

BeKuUH B upnMOyrOnbHOM uOpuCTOM CnOe, HarpeBaeMOM OAHOpOLTHbIMB TeunOBbtMA IIOTOKBMU, Han- 

paBneHHbtMu BnOnb BepTuKanbHbIX rpaHuU. ffpu uOCTaHOBKe 3anaw npsMeunnacb Monenb 
6pHHKMaHa-flapC&i, KOTOpas tT03BOnReT ynOBneTBOpnTb yCnOB&iRM HyneBOfi CKOpOCTu Ha rpaHuue. 

Ypaerieuaa norpamirnoro cnox pemanricb c kicnonb30Bamiebi Moner$surfpoeaHHoro b4eTona neeeaps- 

3aumi 03eeHa. HaffneHo, 9~0 rpaHuvHbre +$eKTbr oKa3btBaroT cymecTBeuHoe BnrinHkie Ha none re4emis 
A TeunOO6MeH. 3TU 3++eKTbI 6onbme BbtpaneHbI B BbrCOKOttOpkiCTbtX CpLtaX, me CKOpOCTb TeSeHWR W 

TetTnOO6MeHa 3HaSATenbHO yMeHbmamTCa. ,!@,I Cpen C HW3KOk-i tTOpHCTOCTbm IlaHHbIe, ITOny’teHHbIe Ha 

0cuoBe 3aKoua Aapce, paccbfaTpeBaroTcn KaK npenenbubrfi cnyqaR npenno*eHuoP Teopmi. LIwcneHHbte 

pe3ynbTaTbr npencTaeneHbr B miana3oHax 20 S R 4 1000, lo-’ d Da d 10 B 2 $ A < 4. noKa3arro, ‘ITo 

aHanrfTwtecKoe pemeHse ypaerreHrrii norpaHwtHor0 cnos xopomo cornacyeTcr c ~ncnemtbth4n pe3ynb- 
TaTaMH. 


